Metric topology
Definition:
Let X be a non-empty set. Let d: XxX to R be a function. Suppose

1. d(x,y) >0 forall x,y €X

2. dx,y)=0 x=y

3. d(x,y)=d(y .x)

4. d(x,2)<d(x,y)+d(y ,z) for all x ,y ,z €X

This d 1s called a metric or distance function. The set X is called a metric
space. A metric space with a metric d is denoted by (X, d).

Definition:

Let (X ,d) be a metric space. Let e>0be a positive real. Let x €X.
Then we define B 4(x,e)={y/ d(x ,y)<e}. Ba(x,€) 1s called an £ e- ball with
centre X and radius e.

Definition:

Let X be a non-empty set. Let d be a metric on X. Then the
collection b={B 4(x ,e)/x €X and >0} for a basis. The topology generated
by b is called the metric topology induced by d.

Definition:

Let A be a subset of a metric space (X ,d). A is said to be bounded. If
there exist a positive real M suchthat d(x,y)<M for all x,;y€Aor d(a;,a;)<M
for all a;a,€A.

Boundedness of a set is not a topological property for it
depends on the particular metric d that is used for X.

Definition:

Let (X, d) be a metric space. Let A contained X. Then the diameter of
A is defined as diam A=sup{d(x,y)/X,yEA}.

Definition:
Let R denote the set of real number.
Consider R"= {(x1 X2,... .Xa)/X€R for all 1}
Let x€ER"™.



X=(X1, X2,...,Xn)
Define | |X| | =(X1*4+x2%+... +%,H)17?

Let x,yER",we define d(x,y)=| |X—y| |
Thend 1s called n Euclidean metric of R".
dx.y)=| | x-y| | =(summation (xi-yi)*)">.

The square matric f in R" mis defined as f(x,y)=max { | Xi-Yi | J=1,2,...n}

Definition:

If X is a topological space X is called a metrizable if there exist a metric on the
set X that induced to topology on X.

A metric space is a metrizable space X together with a specify metric d that
gives the topology on X.

Theorem 20.1

Let X be a metric space with metric d. Define d :XxX to R by the equation
d(x,y)=min{d(x,y),1 }.Then d is a metric that induces the same topology as d.

The metric d is called the standard bounded metric corresponding to d.
Proof:
Given (X, d) 1s a metric space.
Given d(x, y)=min{d(x,y),1}
To prove d is metric
1. d(x,y)=min{d(x.y),1}>0
2. d(x,y)=0,min{d(x,y),1}=0

d (x,y)=0
X=Y
3. d(x,y)=min{d(x,y),1}
=min {d(x, y), 1}
=d(y, x)
4. To prove d(x,z)<d(x,y)+d(y,z)

Case 1:
Suppose d(x, y)<I and d(y,z)<1



d (x,y)=min{d(x,y),1}=d(x,y)
d (y,z)=min{d(y,z),1}=d(y,z)
d (x ,z)=min {d(x,z),1}
d (x ,z2)=d(x,y)+d(y.z)

=d(x, y)+d(y.z)
d(x ,z)<d(x.y)td(y,z)
Case 2:
Suppose d(x, y)<1,d(y,z)>1
d(x,y)=min{d(x,y),1 }=d(x.y)
d(y,z)=min{d(x,z),1}=1
d(x.y)+d(y.z)=d(x,y)+1
d(x,y)+d(y,z)>1
Now,d(x,z)=min{d(x,z),1}=1
d(x,z)=d(x,y)+d(y,z)
Case 3:

Suppose d(x,y)>1 and d(y,z)>1
d(x,y)=min{d(x,y),1 }=1
d(y,z)=min{d(y,z),1}=1
d(x,y)+d(y,z)=2>1
d(x,y)+d(y.z)>1
d(x,z)=min {d(x,z),1}

=l

<d(x,y)+d(y,z)
d(x,z)<d(x.,y)+d(y,z)
d is metric on X.

We note that in any metric space the collection of ¢ balls with e<1 forms a basis
for the metric topology for every basis element containing x contains such on £
balls centered at x.



It follows that d and d induced the same topology on X, because the collection
of e-balls with e<1 under the two metrices are the same collection.

Lemma 20.2:

Let d and d” be two metrices on the set X.Let i and " be the topologies they
induce respectively .Then 1’ is finer than 1 iff for each x in X and each £>0 there
exists a 0>0 suchthat B4(x,0) contained in by(X,€).

Let z€X.
Let £>0 be given.
Consider By(x,¢)

Clearly x€Bq(x,¢) there exist B’€b ,B’ is a basis element ,B’ is open then there
exist >0 suchthat

X €B4(x ,08) contained in B’ C By(x,¢)
B4(x, 0) C Bu(x, €).
Conversely,
Given By(x, 0) CBy(x,¢)
To prove U is finer than 1.
Let x€X.
Let B be the basis element containing X.
x€B.

Then there exist £>0 suchthat x€B4(x,e)CB from the given there exist 6>0
suchthat x€B4’(x,0) CB4(x,e)CB.

Put B’=B4(x,0).
x€EB’CB
There exist B’€b’ suchthat x€EB’CB.

Therefore i’ is finer than 1.



METRIC TOPOLOGY (CONTINUED)

Theorem:21.1

Let £X—Y let X and Y be metrizable with metrices dy and dy respectively then continunity
of fis equivalent to the requirements that given x€X and given £>0 there exist 6>0 such that
dy(x,y)<6=>d(f(x).f(y))< €

Proof:
Given that (x,dy) and (Y,dy) are two metric space
To prove :given & >0 there exist >0 such that d.(x,y)<6=>d(f(x).f(y))< €
Let x€X
Let £ >0 be given
Consider By, (f(x), €) is open in y
Since f is continuous, f 1(de (f(x), €) ) is open in X
Clearly x€ f'(By, (f(x), €) )
Therefore , there exist >0 such that x€B(x, 3)C f 1(de (f(x), €))
Now, d«(x,y)<0=>yEB4(X, 0)
=>y€ f'(Byy (f(x), €) )
=>f(y) € By(f(x), )
=>d,(f(x),f(y))< e

Conversely, assume that given X€X and given & >0 there exist 6>0 such that
dy(x,y)<é=>d(f(x).f(y))<

To prove : { is continuous

Let v be a open in y containing a point of f(x)

ie,f(x) €V ,there exist € >0 such that f{x) € (Bg, (f(x), €) )CV
=>x€ f'(Bgy (f(x), 8) ) C ' (v)- - - - (1)

We have dy(x,y)<6=>d,(f(x),f(y))< €

Let yE€Ba.(x, §)



=>dx(x,y)<0

=>dy(f(x),f(y))< &

=>f(y) € By (f(x), &)

Y € !By, (f(x), €)

Byi(%, 8) € £ (Boy (%) )o=== == (2)
From (1) and (2)
x € Byy(x, &) C £(By, (f(x), €) C £'(v)
Therefore x € Bg(x, 8) C f'(v)
Therefore f'(v) is open in X

Therefore f is continuous
Definition:

let X1 X2........... be the sequences of points in a topological space X. It is said to be converge to a

point x €X iff for all neighbourhood U of X there is a positive integer N such that x,, €U for all
n>N.This 1s denoted by (x,)—x

Lemma :21.2  (The sequence lemma)

Let X be a topological space .let ACX.If there is a sequences of points of A converge to x then
XCA.The converse holds if X is a metrizable

Proof:
Let X be a topological space and ACX
Suppose there is a sequence of points of A converging to X
To prove: XCA
Since (x,)—X , for all neighbourhood U of x there exist N such that x, €U for all n>N
Therefore , x,€CA
Therefore ,U intersect A , for all neighbourhood U containing x intersects A
Therefore , XEA

Conversely, given that X is metrizable and XCA



Let d be a metric for the topology of X

To prove: there exist (X,) €A such that (X,)—X
Consider B(x,1)
B(x,1) is an open set containing x

Since XEA, By(x,1)NA#P

Let x; € By(x,1)NA

Consider B(x,1/2)

This is an open set containing X
Ba(x,1/2)NA+D

Let x,€ Ba(x,1/2)NA
X € Ba(x,1/2)NA

Clearly (X;) €EA--------—----—- (1)
To prove : (Xp)—x
Let U be a neighbourhood of x ,x €U there exist £>0 such that x€B(x,e)CU
Choose N such that 1/N<g
w.k.t, xy € By(x,1/N)
=>d(x, XN)<%<8
=>XN+1 €Bd(X,ﬁ)
:>d(x,xN+1)<ﬁ < % <eg
d(X,Xn+1)< €

X,EB4(x,1/n)



=>d(x,X,)<1/n<1/N<g for all n>N
=>d(X,xn)< € for all >N
Therefore x,€ By(x,e)CU for all n>N
x,EU for all n>N
for all neighbourhood U of x there exist U of X there exist N such that x,€U for all n>N
Therefore,(x,)—Xx--------- (2)
From(1) and (2),

There exist (x,)€A such that (x,)—x

Theorem :21.3

Let £:X—Y.If the function f is continuous then for every convergences sequences (x,)—X in
X, the sequences (f (x,))—f(x).The converse holds if X is metrizable

(or)
Let f:X—Y.Let X be metrizable .The function f is continuous iff for all (x,)—x in X
= (f (xp))—f(x) in Y
Proof:
Let f:X—Y.Let X be metrizable
Suppose f:X—Yis continuous
To prove (X;)—x in X
= f(x,))—f(x)inY
Let v be a neighbourhood of f(x) in Y,f(x)E€V=>x€f 1(V)
Since vis openin Y and f:X—Yis continuous, f '(v) is open in x
Now, since (x,)—x,there exist N such that x,€ £'(v) for all n>N
Therefore f (x,)€V,for all n>N
Therefore , (f (x,))—f(x) in Y

Conversely,suppose (X,)—x in X=> (f (Xx,))—f(x) in Y



To prove : f:X—Yis continuous
Let A be a subset of X
To prove: f(A)Cf(A)
Let f(x)€f(A)
=>x€A
By sequence lemma ,there exist x,€A such that (x,)—x
Therefore f(x)Ef(A)
Therefore f(A)Cf(A)

Therefore f is continuous .
Definition :

A space X is said to have a countable basis at the point x if there is s countable collection
{U,}ue, of neighbourhood of x such that any neighbourhood U of x contains atleast one of the
sets Uy,

The space X has a countable basis at each of its point is said to satisfy the first countability
axiom .

Theorem : 21.5

If X is a topological space and if f,g:X—R are continuous function then f+g,f-g.f.g are
continuous .If g(x)#o for all ,then f/g is continuous.

Proof:

The map h:X—RxR defined,

h(x)=f(x)xg(x) is continuous .

The function f+g equals the composite of h and the addition operation ,+:RxR—R
therefore , f+g is continuous.

Similarly, f-g equals the composite of h and the subtraction operation ,-:RxR—R
therefore , f-g is continuous.

And , f.g equals the composite of h and the multiplication operation, .:RxR—R



therefore , f.g is continuous.
And, f/g equals the composite of h and the division operation , /:RxR—R

therefore , f/g is continuous.
Definition :

Let f,:X—Y be a sequences of function from the set X to the metric space Y . Let d be the metric
for Y.We say that the sequence(f,) converges uniformly to the function f: X—Y.if given £>0
there exist an integer N such that d(f,(x),f(x))<e for all n>N and all x in X .Uniformly of
converges depends not only on the topology of Y but also on its metric.



