Metric topology

Definition:

Let X be a non-empty set. Let d: X×X to R be a function. Suppose

- 1. $d(x,y) \ge 0$ for all $x,y \in X$
- 2. d(x,y)=0 x=y
- 3. d(x, y) = d(y, x)
- 4. $d(x,z) \le d(x,y) + d(y,z)$ for all $x,y,z \in X$

This d is called a metric or distance function. The set X is called a metric space. A metric space with a metric d is denoted by (X, d).

Definition:

Let (X,d) be a metric space. Let $\varepsilon > 0$ be a positive real. Let $x \in X$. Then we define B $_d(x,\varepsilon)=\{y/d(x,y)<\varepsilon\}$. B $_d(x,\varepsilon)$ is called an £ ε - ball with centre x and radius ε .

Definition:

Let X be a non-empty set. Let d be a metric on X. Then the collection $b=\{B_d(x,\varepsilon)/x\in X \text{ and } \varepsilon>0\}$ for a basis. The topology generated by b is called the metric topology induced by d.

Definition:

Let A be a subset of a metric space (X,d). A is said to be bounded. If there exist a positive real M suchthat $d(x,y) \le M$ for all $x,y \in A$ or $d(a_1,a_2) \le M$ for all $a_1,a_2 \in A$.

Boundedness of a set is not a topological property for it depends on the particular metric d that is used for X.

Definition:

Let (X, d) be a metric space. Let A contained X. Then the diameter of A is defined as diam $A=\sup\{d(x,y)/x,y\in A\}$.

Definition:

Let R denote the set of real number.

Consider
$$R^n = \{(x_1, x_2, \dots, x_n)/x_i \in R \text{ for all } i\}$$

Let x€Rⁿ.

$$X=(x_1, x_2,...,x_n)$$

Define
$$| | x | | = (x_1^2 + x_2^2 + ... + x_n^2)^{1/2}$$

Let
$$x,y \in \mathbb{R}^n$$
, we define $d(x,y) = | | x-y | |$

Then d is called n Euclidean metric of Rⁿ.

$$d(x,y) = | |x-y| | = (summation (x_i-y_i)^2)^{1/2}.$$

The square matric f in Rⁿ mis defined as $f(x,y)=max \{ | x_i-y_i |, i=1,2,...n \}$

Definition:

If X is a topological space X is called a metrizable if there exist a metric on the set X that induced to topology on X.

A metric space is a metrizable space X together with a specify metric d that gives the topology on X.

Theorem 20.1

Let X be a metric space with metric d. Define $d: X \times X$ to R by the equation $d(x,y)=\min\{d(x,y),1\}$. Then d is a metric that induces the same topology as d.

The metric d is called the standard bounded metric corresponding to d.

Proof:

Given (X, d) is a metric space.

Given
$$d(x, y)=min\{d(x,y),1\}$$

To prove d is metric

- 1. $d(x,y)=min\{d(x,y),1\}\geq 0$
- 2. $d(x,y)=0,min\{d(x,y),1\}=0$ d(x,y)=0x=y
- 3. $d(x,y)=min\{d(x,y),1\}$ = $min\{d(x,y),1\}$ =d(y,x)
- 4. To prove $d(x,z) \le d(x,y) + d(y,z)$

Case 1:

Suppose d(x, y)<1 and d(y,z)<1

d
$$(x,y)=min\{d(x,y),1\}=d(x,y)$$

d $(y,z)=min\{d(y,z),1\}=d(y,z)$
d $(x,z)=min\{d(x,z),1\}$
d $(x,z)\le d(x,y)+d(y,z)$
 $=d(x,y)+d(y,z)$
 $d(x,z)\le d(x,y)+d(y,z)$
Case 2:
Suppose $d(x,y)<1,d(y,z)\ge 1$
 $d(x,y)=min\{d(x,y),1\}=d(x,y)$
 $d(y,z)=min\{d(x,z),1\}=1$
 $d(x,y)+d(y,z)\ge 1$
Now, $d(x,z)=min\{d(x,z),1\}=1$
 $d(x,z)\le d(x,y)+d(y,z)$
Case 3:
Suppose $d(x,y)\ge 1$ and $d(y,z)\ge 1$
 $d(x,y)=min\{d(x,y),1\}=1$
 $d(x,y)=min\{d(x,y),1\}=1$
 $d(x,y)=min\{d(x,y),1\}=1$
 $d(x,y)+d(y,z)=1$
 $d(x,y)+d(y,z)>1$
 $d(x,z)=min\{d(x,z),1\}$
 $=1$
 $< d(x,y)+d(y,z)$
d is metric on X.

We note that in any metric space the collection of ε balls with ε <1 forms a basis for the metric topology for every basis element containing x contains such on £ balls centered at x.

It follows that d and d induced the same topology on X, because the collection of ε -balls with ε <1 under the two metrices are the same collection.

Lemma 20.2:

Let d and d' be two metrices on the set X.Let i and i' be the topologies they induce respectively .Then i' is finer than i iff for each x in X and each ε >0 there exists a δ >0 such that $B_d(x,\delta)$ contained in $b_d(x,\varepsilon)$.

Let x€X.

Let $\varepsilon > 0$ be given.

Consider $B_d(x,\varepsilon)$

Clearly $x \in B_d(x, \varepsilon)$ there exist B' \in b ,B' is a basis element ,B' is open then there exist $\delta > 0$ such that

 $x \in B_d(x, \delta)$ contained in B' C $B_d(x, \epsilon)$

 $B_d(x, \delta) \subset B_d(x, \varepsilon)$.

Conversely,

Given $B_d(x, \delta) CB_d(x, \varepsilon)$

To prove i' is finer than i.

Let x€X.

Let B be the basis element containing X.

x€B.

Then there exist $\varepsilon>0$ such that $x\in B_d(x,\varepsilon)CB$ from the given there exist $\delta>0$ such that $x\in B_d(x,\varepsilon)CB$.

Put B'= $B_d(x,\delta)$.

x€B'CB

There exist B'€b' suchthat x€B'CB.

Therefore i' is finer than i.

METRIC TOPOLOGY (CONTINUED)

Theorem:21.1

Let $f: X \to Y$ let X and Y be metrizable with metrices d_x and d_y respectively then continunity of f is equivalent to the requirements that given $x \in X$ and given $\epsilon > 0$ there exist $\delta > 0$ such that $d_x(x,y) < \delta = > d_y(f(x),f(y)) < \epsilon$

Proof:

Given that (x,d_x) and (Y,d_y) are two metric space

To prove :given $\varepsilon > 0$ there exist $\delta > 0$ such that $d_x(x,y) < \delta = > d_y(f(x),f(y)) < \varepsilon$

Let x€X

Let $\varepsilon > 0$ be given

Consider $B_{dy}(f(x), \varepsilon)$ is open in y

Since f is continuous, $f^{-1}(B_{dv}(f(x), \varepsilon))$ is open in x

Clearly $x \in f^1(B_{dv}(f(x), \varepsilon))$

Therefore , there exist $\delta > 0$ such that $x \in B_{dx}(x, \delta) \subset f^{-1}(B_{dy}(f(x), \epsilon))$

Now,
$$d_x(x,y) < \delta = > y \in B_d(x, \delta)$$

 $= > y \in f^1(B_{dy}(f(x), \epsilon))$
 $= > f(y) \in B_d(f(x), \epsilon)$
 $= > d_y(f(x), f(y)) < \epsilon$

Conversely, assume that given $x \in X$ and given $\epsilon > 0$ there exist $\delta > 0$ such that $d_x(x,y) < \delta = > d_y(f(x),f(y)) < \epsilon$

To prove : f is continuous

Let v be a open in y containing a point of f(x)

ie, $f(x) \in V$, there exist $\varepsilon > 0$ such that $f(x) \in (B_{d_V}(f(x), \varepsilon)) \in V$

$$=>x \in f^{1}(B_{dy}(f(x), \epsilon)) \cap f^{1}(v)$$
---(1)

We have $d_x(x,y) < \delta = > d_y(f(x),f(y)) < \epsilon$

Let $y \in B_{dx}(x, \delta)$

$$\begin{split} =>& d_x(x,y) < \delta \\ =>& d_y(f(x),f(y)) < \epsilon \\ =>& f(y) \in B_{dy} (f(x),\epsilon) \\ Y \in f^1(B_{dy} (f(x),\epsilon) \\ B_{dx}(x,\delta) \in f^1(B_{dy} (f(x),\epsilon) - \cdots - (2)) \end{split}$$

From (1) and (2)

$$x \in B_{dx}(x, \delta) \subset f^{-1}(B_{dy}(f(x), \varepsilon) \subset f^{-1}(v)$$

Therefore $x \in B_{dx}(x, \delta) \subset f^{1}(v)$

Therefore $f^{-1}(v)$ is open in X

Therefore f is continuous

Definition:

let $x_1, x_2,...$ be the sequences of points in a topological space X. It is said to be converge to a point $x \in X$ iff for all neighbourhood U of X there is a positive integer N such that $x_n \in U$ for all $n \ge N$. This is denoted by $(x_n) \longrightarrow x$

Lemma: 21.2 (The sequence lemma)

Let X be a topological space .let ACX.If there is a sequences of points of A converge to x then $X \in \bar{A}$. The converse holds if X is a metrizable

Proof:

Let X be a topological space and ACX

Suppose there is a sequence of points of A converging to x

To prove: XEĀ

Since $(x_n) \rightarrow x$, for all neighbourhood U of x there exist N such that $x_n \in U$ for all $n \ge N$

Therefore, $x_n \in A$

Therefore, U intersect A, for all neighbourhood U containing x intersects A

Therefore, $X \in \bar{A}$

Conversely, given that X is metrizable and $X \in \bar{A}$

Let d be a metric for the topology of X

To prove: there exist $(X_n) \in A$ such that $(X_n) \rightarrow X$

Consider B(x,1)

B(x,1) is an open set containing x

Since $X \in \bar{A}$, $B_d(x,1) \cap A \neq \Phi$

Let
$$x_1 \in B_d(x,1) \cap A$$

Consider B(x,1/2)

This is an open set containing x

$$B_d(x,1/2) \cap A \neq \Phi$$

Let $x_2 \in B_d(x, 1/2) \cap A$

.....

 $x_n \in B_d(x,1/2) \cap A$

.......

Clearly $(X_n) \in A$ -----(1)

To prove : $(X_n) \rightarrow x$

Let U be a neighbourhood of x ,x \in U there exist ϵ >0 such that $x\in B(x,\epsilon)CU$

Choose N such that $1/N < \epsilon$

w.k.t,
$$x_N \in B_d(x, 1/N)$$

$$=>d(x,x_N)<\frac{1}{N}<\epsilon$$

$$=>x_{N+1} \in B_d(x, \frac{1}{N+1})$$

$$=>d(x,x_{N+1})<\frac{1}{N+1}<\frac{1}{N}<\epsilon$$

$$d(x,x_{N+1}) < \varepsilon$$

.

$$x_n \in B_d(x, 1/n)$$

 $=>d(x,x_n)<1/n<1/N<\epsilon$ for all $n\ge N$

 $=>d(x,x_n)<\epsilon$ for all $n\geq N$

Therefore $x_n \in B_d(x, \varepsilon) \subset U$ for all $n \ge N$

 $x_n \in U$ for all $n \ge N$

for all neighbourhood U of x there exist U of X there exist N such that $x_n \in U$ for all $n \ge N$

Therefore, $(x_n) \rightarrow x$ -----(2)

From(1) and (2),

There exist $(x_n) \in A$ such that $(x_n) \rightarrow x$

Theorem:21.3

Let $f: X \rightarrow Y$. If the function f is continuous then for every convergences sequences $(x_n) \rightarrow x$ in X, the sequences $(f(x_n)) \rightarrow f(x)$. The converse holds if X is metrizable

(or)

Let $f:X \to Y$.Let X be metrizable .The function f is continuous iff for all $(x_n) \to x$ in X

$$=> (f(x_n)) \rightarrow f(x)$$
 in Y

Proof:

Let $f: X \rightarrow Y$.Let X be metrizable

Suppose f:X→Yis continuous

To prove $(x_n) \rightarrow x$ in X

$$=> (f(x_n)) \rightarrow f(x) \text{ in } Y$$

Let v be a neighbourhood of f(x) in $Y, f(x) \in V = x \in f^{-1}(v)$

Since v is open in Y and $f:X \rightarrow Y$ is continuous, $f^{-1}(v)$ is open in x

Now, since $(x_n) \rightarrow x$, there exist N such that $x_n \in f^1(v)$ for all $n \ge N$

Therefore $f(x_n) \in V$, for all $n \ge N$

Therefore, $(f(x_n)) \rightarrow f(x)$ in Y

Conversely, suppose $(x_n) \rightarrow x$ in $X => (f(x_n)) \rightarrow f(x)$ in Y

To prove : $f:X \rightarrow Y$ is continuous

Let A be a subset of X

To prove: $f(\bar{A})Cf(A)$

Let $f(x) \in f(\bar{A})$

=>x€Ā

By sequence lemma ,there exist $x_n \in A$ such that $(x_n) \rightarrow x$

Therefore $f(x) \in f(\bar{A})$

Therefore $f(\bar{A})Cf(A)$

Therefore f is continuous.

Definition:

A space X is said to have a countable basis at the point x if there is s countable collection $\{U_n\}_{n\in z}^+$ of neighbourhood of x such that any neighbourhood U of x contains at least one of the sets U_n .

The space X has a countable basis at each of its point is said to satisfy the first countability axiom.

Theorem: 21.5

If X is a topological space and if f,g:X \rightarrow R are continuous function then f+g,f-g,f.g are continuous .If $g(x)\neq 0$ for all ,then f/g is continuous.

Proof:

The map h: $X \rightarrow R \times R$ defined,

 $h(x)=f(x)\times g(x)$ is continuous.

The function f+g equals the composite of h and the addition operation ,+: $R \times R \rightarrow R$

therefore, f+g is continuous.

Similarly, f-g equals the composite of h and the subtraction operation, $-:R\times R\to R$

therefore, f-g is continuous.

And , f.g equals the composite of h and the multiplication operation, $: R \times R \rightarrow R$

therefore, f.g is continuous.

And, f/g equals the composite of h and the division operation , /:R×R \to R therefore , f/g is continuous.

Definition:

Let $f_n:X\to Y$ be a sequences of function from the set X to the metric space Y. Let d be the metric for Y.We say that the sequence(f_n) converges uniformly to the function $f\colon X\to Y, if$ given $\epsilon>0$ there exist an integer N such that $d(f_n(x),f(x))<\epsilon$ for all $n\ge N$ and all x in X. Uniformly of converges depends not only on the topology of Y but also on its metric.